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Residual stresses of thin, short rectangular 
plates 

A R S A V I R  T. A N D O N I A N , *  STEVEN D A N Y L U K  
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The analysis of the residual stresses in thin, short rectangular plates is presented. 
The analysis is used in conjunction with a shadow Moir6 interferometry technique 
by which residual stresses are obtained over a large spatial area from a strain 
measurement. The technique and analysis are applied to a residual stress measure- 
ment of polycrystalline silicon sheet grown by the edge-defined film growth 
technique. 

1. I n t r o d u c t i o n  
Residual stresses are an important contributing 
cause to the buckling and fracture of engineer- 
ing components. Out-of-plane residual stresses 
result in distortion and, in some instances, may 
lead to fracture. The distortion provides evi- 
dence of the existence of these stresses and may 
be used to determine whether the component is 
acceptable in a particular design application. 
In-plane residual stresses, on the other hand, are 
insidious since they are not visually detectable 
but can promote slow crack growth as in the 
stress-corrosion cracking of metals, or fast frac- 
ture as in the brittle catastrophic fracture of 
ceramics and glasses. There are a number of 
destructive and non-destructive methods [1-9] 
for measuring residual stresses, and a number of 
these have been directed at the detection of in- 
plane residual stresses. The two most widely 
used non-destructive techniques are the X-ray 
and the hole-drilling strain gauge technique. In 
the X-ray technique, X-ray photons are dif- 
fracted from the top few micrometres of a milli- 
metre-square area of a sample surface and the 
widths of selected diffraction peaks are analysed. 
The spread in the peak is due to lattice strain 
imposed by the residual stresses. In the hole- 
drilling strain gauge method, a special rosette 
strain gauge is bonded to the surface and a small 

hole is drilled through the centre of the gauge. 
The resulting change in strain around the hole 
due to the residual stress relaxation is measured. 
In both of these techniques, it is inconvenient to 
measure the strains through the thickness or 
over large areas of the component. 

In this paper we report on the application of 
an interferometry technique for the measure- 
ment of in-plane residual stresses. The technique 
has several advantages over the methods 
described above. It is simple and straight- 
forward, and the sensitivity may be adjusted to 
suit experimental needs; it is non-destructive and 
suitable to provide strains over large spatial 
areas. 

Although the technique can be applied to any 
thin ceramic or metal plate whose width is of the 
order of the length, it is specialized here to the 
measurement of thin short rectangular silicon 
plates that have non-polished but parallel sur- 
faces. The silicon, used here as a typical 
prototypic material, is flexed in a four-point 
bend fixture and the strains imposed by these 
applied loads are measured from interferograms 
produced by an optical grating [10]. The residual 
stresses are determined from an analysis of the 
expected deflection and curvature. A sample 
experimental measurement of a silicon plate is 
presented. 

*Present address: Goodyear Tire and Rubber Company, Akron, Ohio, USA. 

0022~461/85 $03.00 + .12 �9 1985 Chapman and Hall Ltd. 4459 



Z ~ zero neor the ends 

Figure ! A schematic diagram o f  a short, thin unbuckled 
plate containing a heterogeneous in-plane residual stress 
distribution cry. The stress decreases to zero at the ends of  the 
plate. 

2.  A n a l y s i s  
Assume a flat (non-buckled) plate of  uniform 
thickness h, of  width b one-half the length, and 
no body forces or out-of-plane residual stresses. 
Fig. 1 shows a schematic diagram of  the plate 
and a possible variation of  the in-plane residual 
stresses axx that are uniform in the centre and 
decrease to zero at the two ends. Fig. 2 shows a 
schematic diagram of  the possible state of  in- 
plane residual stress at a location x0. This stress 
must decrease to zero at x = 0 since this surface 
is traction-free. This residual stress is necessarily 
heterogeneous since it decreases to zero at the 
ends. Fig. 3 shows a possible variation of shear 
flow Q along the longitudinal sections (parallel 
to the x - z  axis) where the sign of  the residual 
stress changes. 

The variation of  trxx along the width identified 
in Fig. 2 necessitates the use of  separate models 
for the different states of  stress, and the two 
formulations below include these two cases 
when bending moments are applied. We use this 
analysis to compare with experimental results. 

2.1. Case I: rectangular plate under 
bending, in-p lane tension and 
side shear 

If  the plate between Points C and G in Fig. 3 
was subjected to out-of-plane bending, the mid- 
portion could be treated as a rectangular plate 
under bending, in-plane tension and side shear. 
A narrow plate element of  width Ay is shown in 
Fig, 4 for a short plate. This diagram includes 
the free end where the stress residual P is zero 
and a shear flow q ( =  zx=h ds) is present to com- 
pensate for the decrease of P from the position 
x0 to the free end. The variation of  shear flow q 
is assumed, for simplicity, to be linear over the 
major portion of  the plate and decreases to zero 
near the ends since these are traction-free. This 
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Figure 2 Schematic representation of  the in-plane residual 
stresses along an arbitrary transverse section of  the plate. 

variation in shear flow is shown in Fig. 5 for a 
plate of  length L. The shear flow q (not drawn to 
scale in this figure) reaches a maximum value 
and then falls to zero within a distance of the 
order of  the thickness of  the plate. 

The shear flow not near the ends shown in 
Fig. 5 can be expressed as 

q "  K (  L - x )  (1) 

where K represents the change in shear flow per 
unit length. The applied bending moment M is 
distributed along the length of  the plate and at x0 
the bending moment is M'.  

If  the deflection along the plate is approxi- 
mated as 

W = A x  2 + B x  + C 

and the boundary conditions are given as 

[x = 0, w = 0]; [x = L , w  = 0] 

then 

w = A ( x  2 -- L x )  (2) 
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Figure 3 Schematic representation of  the residual stresses 
along the length of  the plate and the shear flow on longi- 
tudinal sections where the sign of  residual stress changes. 
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Figure 4 A narrow plate element of width Ay. This element 
includes the end (x = 0) where P = 0. 

Considering angular equilibrium, 

M' = M -- Pw + Mq (3) 

where 

Mq = 2 fo ~ qw dx (4) 

From linear equilibrium the stress residual in 
the x-direction can be written as 

= 2 I~ ~ q dx (5) P 

Substituting Equation 1 into Equation 5, 

P = 2 f o ~  L - x ) d x  

Solving for K, 

P 
K = L x o -  x~ (6) 

and comparing Equations 1 and 6 we get 

q - x~ Z Lxo 

Substituting Equations 2 and 7 into Equation 4, 

Mq = 2 fo~ (x02 --e-zx0) 

or 
AP 

Mq = 2 (x~ - Lxo) (8) 

x o 

Figure 5 Shear flow variation along a longitudinal cut of the 
plate shown in Fig. 4. 

Substituting Equation 8 into Equation 3, 

AP 
M" = M -  Pw + T ( x ~ -  Lxo) (9) 

Finally, assuming small deflections and utilizing 
the relation for plate curvature we get 

1 d2w M'  
0 dx2 D 

where 

Eh3 b 
D = 

12(1 - v 2) 

and h = plate thickness, b = plate width, 
E = modulus of  elasticity and v = Poisson's 
ratio. The governing equation for Case I can 
then be written as 

d2w M P AP 
dx 2 - D D W + ~ ( x ~ -  Lxo) (10) 

where (d2w/dx 2) = 2A (to be determined 
experimentally), M = applied moment (known) 
and w = measured deflection at x 0. 

2.2. Case I1: rectangular plate under 
bending, in-plane compression and 
side shear 

The state of  loading in Regions A - C  or G- I  
(Fig. 3) is one of  in-plane compression, side 
shear and bending and is shown in Fig. 6. 
Similar to Case I, the angular equilibrium can be 
expressed as 

m t : m Ji- P w  --  Mq (1 l) 
Substituting Equation 8 into Equation 11, 

AP 
M'  = M + P w -  T ( x ~ -  Lxo) (12) 

and the governing equation is 

d2w M P AP 
dx 2 - D +-D w - - ~ ( x ~ -  Lxo) (13) 

Figure 6 State of  stress in Case II. (M, M' ,  and P are 
described in Fig. 5.) 
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Figure 7 Schematic diagram of a four-point 
bend fixture used to flex a silicon plate by a 
specific applied load. 

As can be seen from Equations 10 and 13, the 
curvature at any length along a deflected plate is 
dependent on M, the applied moment, and P, the 
stress residual. The determination of  the curva- 
ture of a thin, short silicon plate is given below. 

3.  E x p e r i m e n t a l  t e c h n i q u e  
A thin short rectangular plate of  silicon is 
positioned in a four-point bend apparatus as 
shown in Fig. 7. This fixture, which is mounted 
on an optical bench, is used to flex the silicon 
with loads that are recorded by a load cell. An 
optical grating with 200 lines per in. (7874 per m) 
is positioned in front of  the silicon and the 
silicon surface is illuminated by a helium-neon 
laser. A pattern of  light and dark fringes can be 
seen if the silicon surface is viewed through the 
optical grating [10]. Fig. 8 shows a schematic 
diagram of the optical system, the four-point 
bend fixture and the camera used to record the 
fringe pattern as a function of  load on the 
silicon. The interference fringes and the fringe 
density can be used to measure the out-of-plane 
displacements and the curvature. 

Fig. 9 shows the interferogram obtained after 
deflection of the 0.03cm x 10.2cm x 5.1cm 
silicon plate by a load of  2 N. To find the local 
curvature R of the silicon plate at an arbitrary 
Point Q, a three-point method is used in con- 
junction with the optical data in the vicinity of  
Point Q. Fig. 10 shows a small portion of the 
silicon plate which contains Point Q at which 
optical information is gathered. 

The radius of  curvature of the silicon plate at 
Point Q is obtained by passing a circle through 
the data points. The circle has the functional 
form 

x 2 + z 2 + 2 d x  + 2e z  + f  = 0 (14) 

the radius of which can be expressed as 

R = (d 2 + e 2 - f),/2 (15) 

where d, e, and f a r e  constants to be determined. 
After reducing the optical information at 

three solution stations surrounding Point Q, we 
get (x], z]) at Point 1, (x2, z2) at Point 2 and 
(x3, z3) at Point 3. Substituting these data into 
Equation 14, we gel 
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Figure 8 Schematic diagram of 
the optical system. 

2dxl + 2ezl + f = 

2dx2 + 2ez2 + f = 

2 d x  3 -'F 2ez3 + f = 

or in matrix form 

- ( 8  + g) 
+ zb 

+ zb 

Ilzil 2d + z!l 
x2 z2 2e = - x2 2 + 

3 Z3 f + z3j  

from which d, e andfcan  be calculated to deter- 
mine the local radius R. The reciprocal of this 
radius is equal to 2A and since M and w are 
known, Equations 10 and 13 may be used to 
obtain P. 

4. Application to polycrystalline 
silicon sheet 

The shadow Moir~ technique for measurement 
of residual strains and the analysis above have 
been applied to thin flat plates of polycrystalline 
silicon ribbon grown by edge-defined film 
growth (EPG) technique into long ribbons 10 cm 
wide • 0.05 mm thick x L, and sectioned into 

15 cm long strips. These strips, used in solar cell 
manufacture, have surfaces that replicate the 
graphite dyes through which the ribbon is 
extracted and the thickness uniformity is ,-~ 15% 
[ 11 ]. A representative interferogram of a 10.2 cm 
long ribbon that had been grown at 2 cm min-1 
is shown in Fig. 9. This figure shows the non- 
uniform fringe pattern representative of a 
complex surface geometry and residual stress 
distribution. The residual stresses along the 
length have been determined from this inter- 
ferogram and the results are shown in Fig. 11. 
This figure shows axx at 0.5, l, 2, 3 and 3.5in. 
(12.7, 25.4, 50.8, 76.2 and 88.9mm) from one 
end of the ribbon. As can be seen, the residual 
stress is tensile in the centre and compressive at 
the edges, the maximum stresses having a 
magnitude of 7 MPa. 

Acknowledgements 
The initial stages of this work were supported by 
the Mobil Solar Energy Corporation and con- 
tinuing support was provided by the Jet Propul- 
sion Laboratory, Flat-Plate Solar Array Project 
No. 956053. This support is gratefully acknowl- 
edged. Dr J. Kalejs of Mobil Solar Energy 
Corporation and Dr A. Morrison of the Jet 
Propulsion Laboratory provided much-needed 

Figure 9 Shadow Moir~ interferogram of a thin short silicon 
plate flexed in a four-point bend fixture with a load of 2 N. 
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Figure 10 Schematic diagram of the geometry of the local 
curvature of the silicon plate. 
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